



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

## Workshops on grid metrology for efficient electricity grids

– Day 2 –

Stakeholder Workshop of the EMPIR TrafoLoss project

- Start at 13:00 (CEST)
- <u>Workshop will be recorded</u> (will be made available at the TrafoLoss website)



### More than 40 registered participants (from all over the world)

- Utilities
- Power transformer manufacturers
- Instrument manufacturers
- NMIs
- Universities and research institutes

In order to assure a smooth meeting, please

- Switch of your video and audio when not speaking to limit bandwidth and interference
- Use the "raise hand" function for asking questions



# Opening address Fabienne van Booma VSL director





| 17.06.2021                       | Stakeholder Workshop                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 13:00<br>13:05<br>13:25          | Opening of the meeting by VSL Director<br>Overview and Progress of TrafoLoss<br>Overview and Progress of FutureGrid II                                                                                                                                                                                                                                                       | F. van Booma (VSL)<br>G. Rietveld (VSL)<br>E. Mohns (PTB)                        |
| 13:45<br>14:05<br>14:25<br>14:35 | <ul> <li>Industrial Loss Measurement Systems (LMS)</li> <li>Active voltage divider with small phase error</li> <li>New Loss Measurement System<br/>instrumentation – voltage transformer</li> <li>Reference setup for evaluating LMS voltage<br/>channels</li> <li>Harmonic analysis of non-sinusoidal waveforms<br/>during NLL measurement of power transformers</li> </ul> | J. Hällström (VTT)<br>A. Vukadinovic<br>(EPRO)<br>P. Räther (PTB)<br>G. Ye (VSL) |
| 15:00                            | Coffee Break                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |
| 15:20<br>15:40                   | <ul> <li>Primary references for calibrating industrial LMS</li> <li>Calibration guidance for power transformer and reactor LMS</li> <li>New high-end reference setup for transformer LMS system calibration</li> </ul>                                                                                                                                                       | G. Rietveld (VSL)<br>E. Houtzager (VSL)                                          |
| 16:20<br>16:40                   | <ul> <li>LMS calibration setup and onsite experiences</li> <li><u>Impact</u></li> <li>Project outputs,</li> <li>Stakeholder uptake</li> <li>Outlook – future work</li> </ul>                                                                                                                                                                                                 | H. Cayci (TUBITAK)<br>G. Rietveld (VSL)                                          |
| 17:00                            | End of Workshop                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |

#### 17NRM01 TrafoLoss



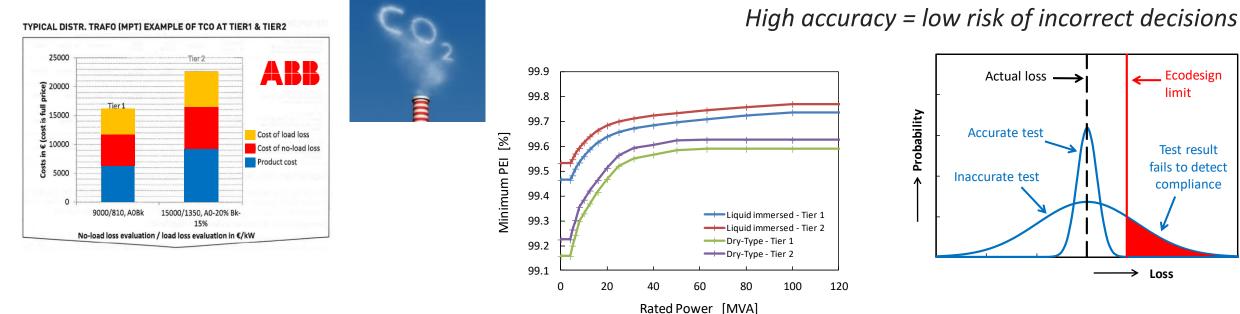




## TrafoLoss project introduction: "Loss Measurements on Power Transformers and Reactors"



Gert Rietveld


gert.rietveld@vsl.nl

TrafoLoss final workshop 17 June 2021





- Losses are significant cost (TCO) and significant environmental impact
- EU Ecodesign requirements per 1 July 2015, saving 16 TWh/year ( $\approx$  17 % of total grid losses)
- Customers: fines on losses in excess of guaranteed losses
  - $\Rightarrow$  3 % uncertainty corresponds to 150.000  $\in$  for 100 MVA transformer





CLC TC14 "Power Transformer" industry needs:

- Accurate industrial loss measurement systems for transformer & reactor losses
- System calibration of industrial loss measurement systems (TLMS)
- Guidance in complex uncertainty evaluation

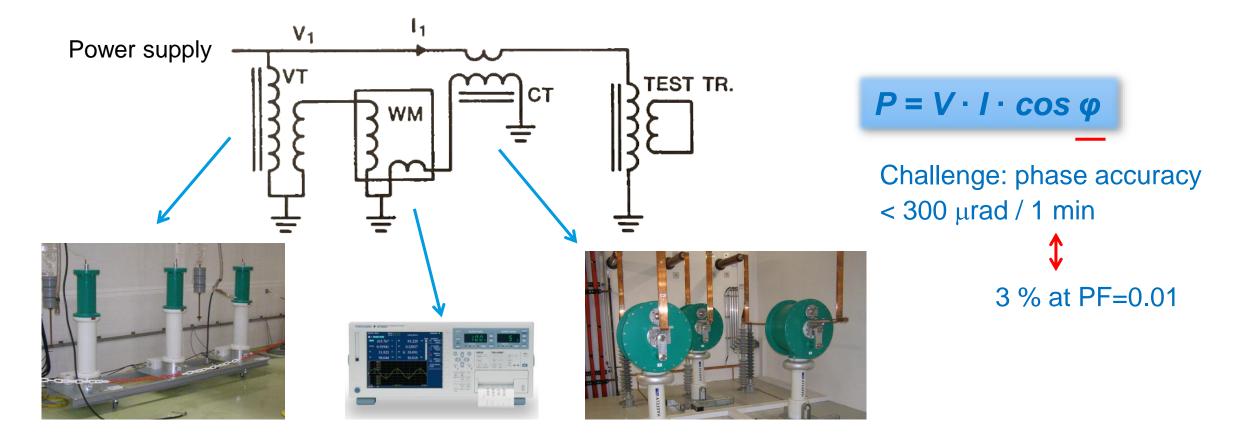
#### Normative issues



- Effects non-sinusoidal waveforms (NLL)
- EU Guidance on TLMS calibration
- Reactor loss tests accuracy evaluation (IEC and CLC 60076-19)

Project response

Key result: new instrumentation for loss measurements


up to 230 kV, 2000 A with 20 µW/VA uncertainty

- 6 partners
- 4 collaborators

7

- 2018 2021 (42 months)
- 1 MEuro





TMS typical measurement range: 0 – 100 kV, 0 – 2000 (4000) A



Power:  $P = U \cdot I \cdot \cos \varphi$  with  $\varphi \sim 90^{\circ}$ 

 $P = U \cdot I \cdot \cos(90^{\circ} - \alpha) = U \cdot I \cdot \alpha \text{ with } \alpha = (90^{\circ} - \varphi) \sim 0^{\circ}$ 

*U* and *I* are large numbers  $\Rightarrow$  1 % uncertainty is very easy

α is a very small number: for PF=0.01,  $α = 0.57^{\circ} \Rightarrow 1$  % uncertainty is a big challenge! 1 % losses(6 m°, 0.34 min, 100 µrad)

 $\Rightarrow$  *Phase* accuracy, not *amplitude* accuracy is critical!!



Aim: support of the power transformer industry in meeting the Ecodesign requirements Key project data: 650 k€, 6 partners, 3 years, May 2018 – April September 2021

 $\Rightarrow$  Follow-up on ELPOW result:

|                                       | Industrial state of the art              | ELPOW targets           | TrafoLoss               | at PF=0.01 |
|---------------------------------------|------------------------------------------|-------------------------|-------------------------|------------|
| Industrial reactor loss               | 100 μW/V<br>single phase                 |                         | 50 µW/VA at             |            |
| Industrial transformer loss           | 100–300 µW/VA at<br>0-100 kV three phase |                         | 0-230 kV three-phase    | 0.5 %      |
| Primary reference reactor loss        |                                          | 10 μW/VA<br>at 0-0.5 kV | 10 µW/VA at 0-0.5 kV    |            |
| Primary reference<br>transformer loss |                                          | 50 μW/VA<br>at 0-100 kV | 20 μW/VA<br>at 0-230 kV | 0.2 %      |
|                                       |                                          |                         |                         |            |

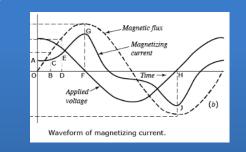


## Key results of the project

- Advanced industrial TLM system with better voltage channels (50 μW/VA)
- 2. Reference setup for calibration of industrial TLM systems (20  $\mu$ W/VA)
- 3. Improved traceability of DF
- 4. Uncertainty analysis of loss measurements
  - Effect of non-sinusoidal waveforms

2




 On-site calibration under harsh industrial conditions
 Reference system: 20 µW/VA

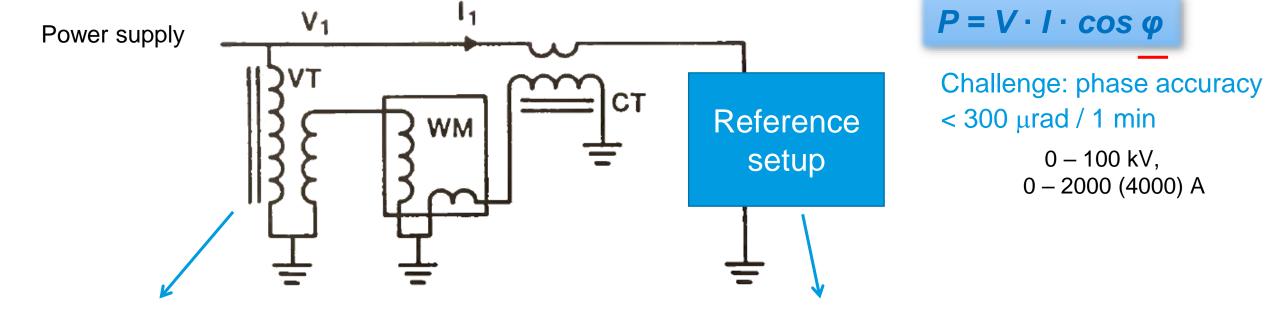


3

HV capacitor loss (DF) traceability up to 40 kV
DF verification of HV capacitors Challenge: phase accuracy  $10 - 50 \mu rad$   $P = U \cdot I \cdot \cos \varphi$ 0.5 % at PF=0.01

4

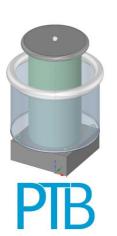



 Reactor loss uncertainty evaluation – guidelines
 Complex uncertainty model
 Non-sinusoidal waveforms in unloaded trafo testing (NLL)



- New capacitive voltage divider with buffered output
- Inductive divider up to 230 kV
- Electronically compensated current transformers
- $\Rightarrow$  Industry loss measurement system, 50  $\mu$ W/VA accuracy

1

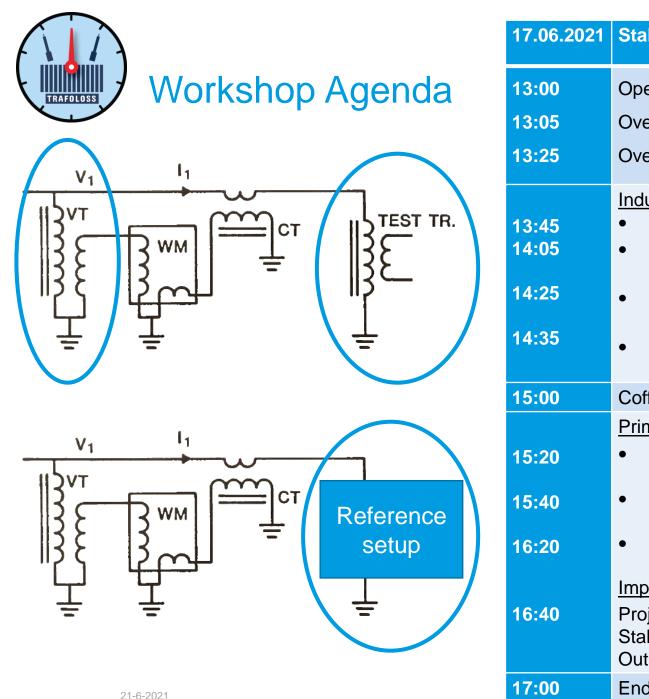





1. Advanced TLMS voltage channels (0.005 %)








2. Reference setup for system calibration: simulates adjustable losses to TLM (0.002 %)










| .2021 | Stakeholder Workshop                                                                                                                                                                                                                                                         |                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|       | Opening of the meeting by VSL Director                                                                                                                                                                                                                                       | F. van Booma (VSL)                                                             |
|       | Overview and Progress of TrafoLoss                                                                                                                                                                                                                                           | G. Rietveld (VSL)                                                              |
|       | Overview and Progress of FutureGrid II                                                                                                                                                                                                                                       | E. Mohns (PTB)                                                                 |
|       | <ul> <li>Industrial Loss Measurement Systems (LMS)</li> <li>Active voltage divider with small phase error</li> <li>New Loss Measurement System<br/>instrumentation – voltage transformer</li> <li>Reference setup for evaluating LMS voltage<br/>channels</li> </ul>         | Jari Hällström (VTT)<br>Anto Vukadinovic<br>(EPRO)<br>Peter Räther (PTB)       |
|       | Harmonic analysis of non-sinusoidal waveforms     during NLL measurement of power transformers                                                                                                                                                                               | Gu Ye (VSL)                                                                    |
|       | Coffee Break                                                                                                                                                                                                                                                                 |                                                                                |
|       | <ul> <li>Primary references for calibrating industrial LMS</li> <li>Calibration guidance for power transformer and reactor LMS</li> <li>New high-end reference setup for transformer LMS system calibration</li> <li>LMS calibration setup and onsite experiences</li> </ul> | Gert Rietveld (VSL)<br>Ernest Houtzager<br>(VSL)<br>Hüseyin Cayci<br>(TUBITAK) |
|       | <u>Impact</u><br>Project outputs,<br>Stakeholder uptake<br>Outlook – future work                                                                                                                                                                                             | Gert Rietveld (VSL)                                                            |
|       | End of Workshop                                                                                                                                                                                                                                                              |                                                                                |



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States





"This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme"