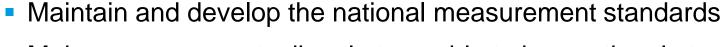


The EMPIR Initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

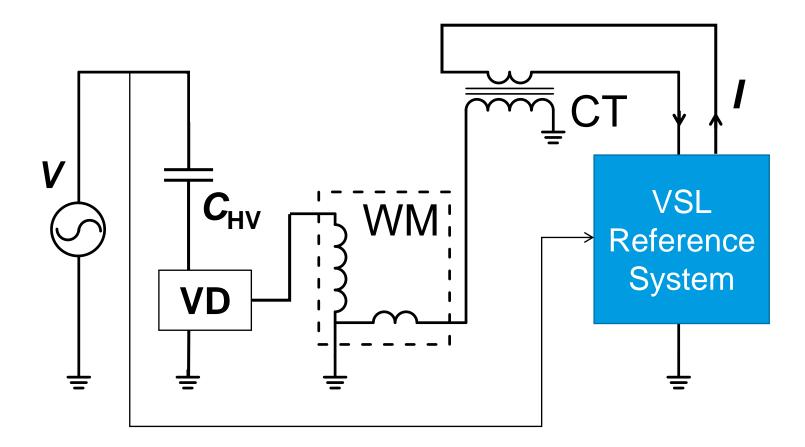
New VSL high-end reference setup for transformer LMS system calibration

Ernest Houtzager Gert Rietveld Gu Ye

TrafoLoss stakeholder workshop 17 June 2021

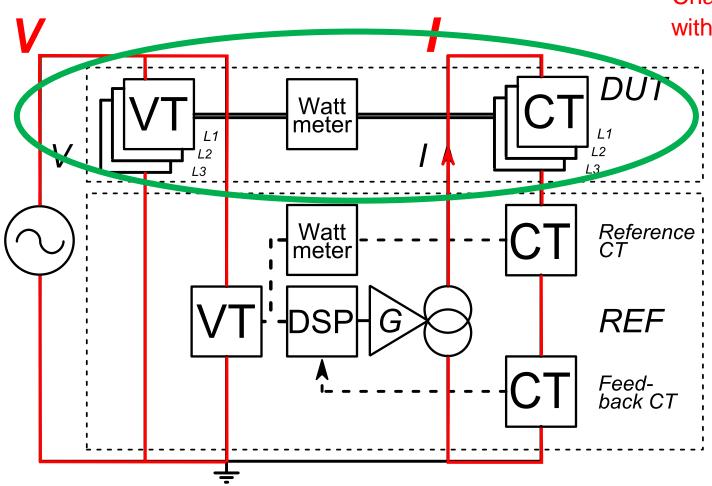

VSL: the Dutch National Measurement Institute (NMI)

- Make measurements directly traceable to international standards
- Support reliability, quality and innovation both in business and society at large


VSL:

- Company with public task (100 fte, 50 % MSc-PhD)
- Calibrations, reference materials, R&D, consultancy, training
- Independent, reliable, top in measurement, international
- Focus: energy, industry, health, climate

VSL TLMS system calibration – VSL approach

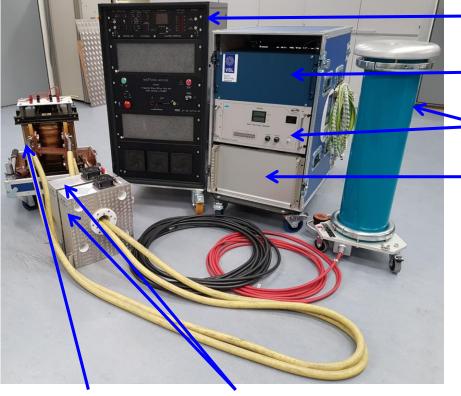

VSL reference system simulates adjustable losses to TLM system

- Phantom power
- Calibration includes all systematic effects
- Calibration under actual PF values

 \Rightarrow More complex to perform, but smaller overall system uncertainty (0.07 min)

VSL VSL TLM system calibration setup

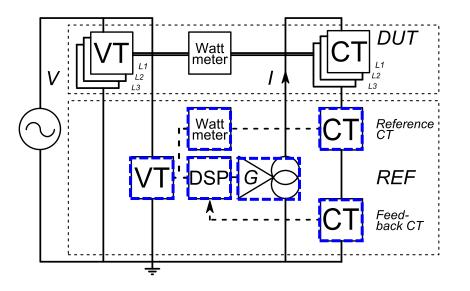
Challenge: lock *I* to *V* within 0.3 m $^{\circ}$ (5 µrad)


- 100 / 230 kV, 2000 A
- Test current generated in feedback loop; digital control
- Accuracy: 20 µW/VA
 (0.2 % at PF = 0.01)

NRC CNRC

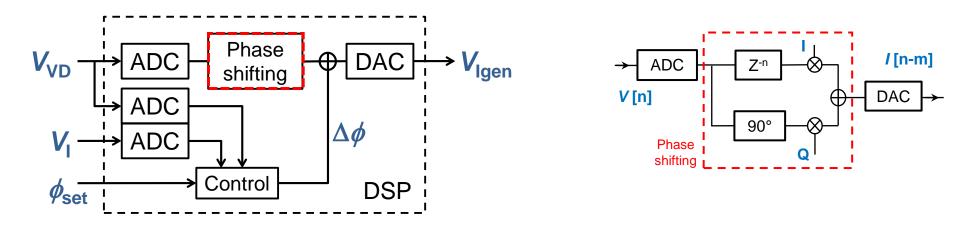
 Fully automated, transportable – suitable for on-site calibrations

VSL VSL TLMS system calibration setup - components


Transformer / CTs (3-stage active current generator compensation)

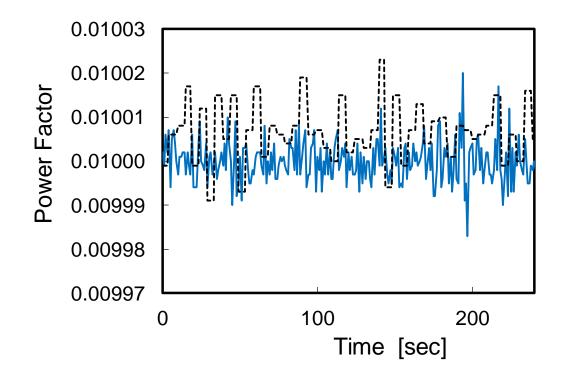
Power amplifier (G)

Control (DSP)


• VT (CC-based capacitive divider)

Power reference (RD22 watt meter)

The DSP is the critical part of the setup, with 2 main parts:



Critical elements:

- DC offset removal (output of HV divider has varying DC offsets
- Accuracy via two 24-bit ADCs; phase shifting does not have to be accurate!
- Power measurement with averaging over 200 ms (5 points / sec)

SL Typical control loop test result

Noise: $< 6 \mu rad (1 s)$

Agreement LL and RD22: $< 3 \mu$ W/VA (after corrections for their errors)

Noise in feedback loop affected by:

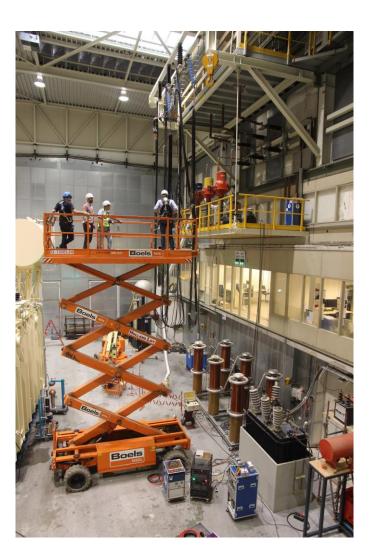
- THD (preferably THD < 0.5 %; no effect on accuracy!)</p>
- Capacitive compensation, needed to generate currents > 1500 A

Uncertainty source	[%]
Voltage scaling - HV cap	0.05
Voltage scaling - LV unit	0.07
Current scaling	0.05
Power measurement	0.08
Noise	0.05
System effects	0.07
Total uncertainty $(k = 2)$	0.15

Improvements in the past years:

- Voltage channel from 15 to < 8 ppm (IEEE paper; study of cable effects)
- Power from 12 to 8 ppm
- Lower noise at higher currents (where capacitive compensation is needed)
- Improved capacitive compensation in primary current circuit

Present CMC claim: 0.20 % at PF = 0.01


VSL On-site experiences

- Extensive attention paid to safety, shielding (triax cables), grounding.
- Completely automated: 2 f × (3 V × 7 I) × 5 PF × 2 = 420 pts in 1 weekend.
- Fiber readout.

ROYAL SMIT

Your dedicated partner of the SGB-SMIT Group

VSI

Dutch

Table 6

Metrolog

Institute

TMS581

Range

kV

100

100

200

200

Uncertainty

Applied

Voltage

kV

40

100

80

200

System calibration certificates

Applied

Current

A

250

250

250

250

System errors of the reactor loss measurement system at 250 A

depends on the on-site conditions!

Voltage

SF

1000

1000

2000

2000

CERTIFICATE OF CALIBRATION

PF 0.001

%

-0.3

0.8

1.8

1.4

3.0

Page 3 of 6

System error

PF 0.002

%

0.2

0.4

0.8

0.5

1.5

PF 0.005

%

0.0

0.1

0.4

0.2

0.6

Errors in percent

60 Hz, 20 kV, MIL 2500A range: 20 kV

3 Phase

Test current: 0.6 A

Test current: 2 A

Power		3 Phase		
Factor	U	V	W	
0.100	1.4	1.3	1.2	1.3
0.250	0.8	0.9	0.8	0.8
0.500	0.7	0.7	0.7	0.7
0.900	0.6	0.6	0.6	0.6

	3 Phase			
U	V	W		
2.4	2.2	2.3	2.3	
1.2	1.1	1.2	1.2	
0.3	0.2	0.3	0.3	
0.1	0.1	0.1	0.1	
	2.4 1.2 0.3	2.4 2.2 1.2 1.1 0.3 0.2	U V W 2.4 2.2 2.3 1.2 1.1 1.2 0.3 0.2 0.3	U V W 2.4 2.2 2.3 2.3 1.2 1.1 1.2 1.2 0.3 0.2 0.3 0.3

Test current: 10 A Phase

V

W

Test current: 50 A

Power	Power Phase			3 Phase
Factor	U	V	W	
0.005	2.1	2.5	2.3	2.3
0.010	1.0	1.3	1.1	1.1
0.025	0.4	0.5	0.5	0.5
0.050	0.2	0.3	0.2	0.2
0.100	0.1	0.1	0.1	0.1

Test current: 100 A

Power		3 Phase		
Factor	U	V	W	- 30.0000
0.005	2.0	2.4	2.2	2.2
0.010	1.0	1.2	1.1	1.1
0.025	0.4	0.5	0.5	0.5
0.050	0.2	0.3	0.2	0.2
0.100	0.1	0.1	0.1	0.1

Test current: 500 A

Power		3 Phase		
Factor	U	V	W	
0.002	1.1	0.7	0.9	0.9
0.005	0.3	0.2	0.3	0.3
0.010	0.2	0.1	0.1	0.1
0.025	0.1	0.0	0.1	0.0
0.050	0.1	0.0	0.1	0.0

Power	Phase			3 Phase
Factor	U	V	W	
0.002	0.4	0.3	0.3	0.3
0.005	0.2	0.2	0.2	0.2
0.010	0.2	0.1	0.1	0.2
0.025	0.1	0.1	0.1	0.1
0.050	0.0	0.0	0.1	0.0

Factor 0.010 0.025

Power

1.8 1.9 1.8 1.8 0.7 0.7 0.7 0.7 0.050 0.4 0.4 0.4 0.4 0.100 0.2 0.2 0.2 0.2 0.500 0.0

U

0.0 0.0 0.1

Power Factor		Phase			
	U	V	W		
0.005	2.0	2.4	2.2	2.2	
0.010	1.0	1.2	1.1	1.1	
0.025	0.4	0.5	0.5	0.5	
0.050	0.2	0.3	0.2	0.2	
0.100	0.1	0.1	0.1	0.1	

Test points completely flexible to meet the needs	Test current: 1000 A					
 Typically: mostly-used V – I combinations 		U	Phase V	w	I	
		0.4	0.3	0.3	1	
Final uncertainty of the system calibration strongly	0.005	0.2	0.2	0.2	+	

"This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme"

VSL Conclusion

VSL has developed a unique reference setup for on-site system calibration of industrial LMS up to 230 kV and 2000 A with 20 μ W/VA uncertainty

- 50 Hz, 60 Hz
- Fully automated: 21 V-I combinations, at 2 frequencies (420 test points) in 1 weekend
- Suitable for reactor systems (230 kV, 2 % uncertainty at PF = 0.001)
- Traceable to national standards, accredited (ISO 17025, CIPM MRA)

Reference setup already used in more than 10 on-site LMS calibrations!

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States