17NRM01 TrafoLoss

VSL VSL VTT VTT VTT VTT VTT VTT V VTT "TrafoLoss": Loss Measurement system instrumentation – voltage transformer

Anto Vukadinovic anto.vukadinovic@epro.at

Stakeholder workshop 17 July 2021 Webmeeting

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

SMART ELECTRICITY GRIDS

EURAMET

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

- voltage level up to 230kV Target accuracy related to power is better than 50 μ W/VA, at voltage levels of up to at least 230 kV
- Target accuracy was 40 µV/V and 25 µrad at
- loss measurement of power transformer and reactors at very low power factor

highly accurate measuring system used for

Develop a voltage transformer prototype for

Ratio	Phase displacement
uncertainty	uncertainty
40 µV/V	25 µrad

Accuracy	Power factor
50 µW / VA	Any
1000 µW / W or 0.1%	0.05
5000 µW / W or 0.5%	0.01

Construction of voltage transformer, his standard and variable compensation and Mbox

Design:

- Improved version of existing design trought two passive compensation
- Easy to scale up the voltage, without any error trade off related to design.
- Design characteristics in terms of accuracy are:
 - Naturally small ratio and angle error
 - Standard error compensation with passive elements (sets the error arround zero over the entire range)
 - Variable error compensation also with passive elements (makes natural compensation, but with different amount over the entire measuring range)
- Design with electronic Box for digital conversion.
 These box are generally part of system which ultimately serve to determine the measuring losses
- Box have possibility of digital error compensation/correction

Up to 230 kV

Aim: Validation of the voltage channel

- Validation plan:
 - 1. Validate the voltage transformer with Mbox with brigde
 - 2. Validate the two Boxes on absolute error with precise RMS voltmeter
 - 3. Check the ratio and phase displacement of two Boxes when parallel
 - 4. Validate the voltage transformer with passive compensation

Electronic equipment for validation at PTB campaign

Equipment:

- 1. Voltage transformer with standard and variable compensation
- 2. Mbox for voltage transformer under test
- 3. Mbox (low burden) for reference voltage transformer
- 4. Data collecting unit and DC supply
- 5. Software reader

Set up for validation of the voltage transformer with Mbox on PTB and EPRO side

July 2021

On the left is the test setup at PTB for the voltage transformer + Mbox validation. Right at EPRO.

Rated voltage	Points
85 kV	90% - 20%
15 kV	120% - 40%

June 2021

Mbox Reader

VBox 142 * VBox 134 ted to Excel START

Data collecting and DC supply

Software

- One Mbox only for this purpuse (lower burden) at PTB or EPRO Referenz
- Other Mbox on the Test object
- Both boxes similar design, with optical cable to data sampling unit (specially for this project)
- Mbox software reader is used to show voltage and phase displacement
- The relevant mean voltage value is calculated from 24 current values.
- Measuring points are from 120% to 20%.
- Voltage up to 100 kV.

TRAFOLOSS

Verification of the complete EPRO loss measurement system (TMS) from PTB Side

PTB Calibration Certificate for EPRO digital Wattmeter with standard voltage and current transformer

- Relative measurement uncertainty (from PTB) is from 10ppm up to 50ppm depending on range
- Since 2014 PTB calibration certificate is available for any customer
- At power factor 0.01 we can calculate the accuracy on the basis of the angle error wo got verfied. This amounts to 0.5% of the measured losses.

Thank you for listening

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme